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.

A method of coni’orml transformation is developed
that Jnaps an airfoil into a straig~it line, the llne
being chosen es the extended chord line of the airfoil.
The mapping is accomplished bT operating directl:?with
the airfoil ordinates. The absence of any prelir.linary
transformation is found to shorten the work substantially
over that of’previous nethods. Use is made of the
superposition of solutions to obtain a rigorous counter-
part of’the approximate methods of’thin-airfoil theory.
The method is applied to the solution of the direct and
inverse problems for arbitrary airt’oils and pressure
distributions. Numerics.1 examples are given. Appli-
cations to more general types of regions, in particular
to biplanes End to cascades of airfoils, are indicated.

INZ’RODUCTIOH

In an attempt to set up an efficient numerical method
for finding the potential flow through an a~bitbary caa-
cade of airfoils (reference 1) a method or conformal
transformation was developed that was found to apply to
advanta~e in the case of’isolated airfoils.

The method consists in transf’orndng the isolated
airfoil directly b a straight line, namely, the extended
chord line of ths airfoil. The absence of the hitherto
usual preliminary transformation of’the airfoil into a
near circle makes for a decided simplification or concept
‘and procedure.
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The exposition of the method, followed by its appll.
cation to the direct problem of the conformal mapping of
given airfoils, 5.sgiven in part I of this paper. In
part 11 the method is applied to the Inverse problem of
airfoil tb.eory; namely, the derivation of an airfoil sec-
tion to satisfy a prescribed velocity distribution. A
comparison with previous inverse methods is made. Addi-
tional material that will be of use in the application of
the method is given in the appendixes. In appendix A cer-
tain numerical details of the calculations are discussed.
In appendix B extensions of the method to the conformal
mapolng of other types of regions are indicated. The
relation of the methods used for the mapping of airfoils
to the Cauchy Integral formula is discussed in appendix C.

Acknowledgment Is made to ?&s. I,olsFvans Doran of
the computing staff of the Lan~ley full-scale tunnel for
her assistance in making the calculations.
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z =X+ly plane of airfoil

f=g+i’rj plane of straiGht lines

P plane of unit circle

Q central angle of circle

Ax component of Cartesian -mapping function (CMF)
parallel to chord

Ay component of Cartesian mapping function perpen-
dicular to chord

Axo, Ayo particular CMF~s, tables T and 11

T displacement constant for locatlng airfoil

r = 2R diameter of circle, se-nilen@h of straight line

Cn = an + Ibn coefficients of series for”CM’

~N nepative of central a~~le of circle, corresponding
to leading edge of airfoil
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central angle of circle minus 180°, corresponding
to trailing edge of airfoil-

alrfoll chord “

section lift coefficient

velocity at surface of airfoil, fraction of free-
streti velocity

velocity at surface of circle, fraction
stream velocity

free-stream velocity

element of’length on airfoil

circulation “

thickness factor

camber factor

thichness ratio

normalizing constant

denominator of equation (17)

camber, percent

incremental CMl?~s

positive area under approximate Vpm

negative area under approximate Vp(Q)

angle of attack

Ideal angle of attack

ST

true potential

approximate potential

central angle of near circle

e“

of free-

curve

curve
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Subscripts:

N

T

c

t

o, 1, 2

leading edge (nose)

trailing edge

csmber

thickness

successive approximation in direct or inverse
CNF nethods

I - THE DIRECT POTENTIAL ?ROBLGM OF AIRFOIL THEORY

Consider the transformation of an airfoil, z-plane,
into a straight line, (-plane (fig. 1). The vector
distance between confornally corresponding points such
as Pz and PC on the two contours 1s composed of a
horizontal displacement Ax and a vertical displace-
ment Ay. The quantity Ax + i Ly is only mother way
of writing the analytic function z - ~; that 1s,

z- t =(x+ iy)-(g+iq)

=(~- g) + i(y - q)

EAx+~Ay (1)

By Rlemannls basic existence theorem on conf’ormal
mapping, the function z - C connecting conformably
corresponding points in the z- and ~-pianos is a regular
function of either z or 4 everywhere outside the
airfoil or straight lin~. This function will be referred
to as a Cartesian mappin~ function, or CMF. In order to
map an airfoil onto a straight line, the airfoil ordi-
nates &y are reGarded as the imaginary part of an
analytic function on the straight line and the problem
reduces to the calculation of the real part Ax.
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The.,calculation of the real part -of.gg.analytic
function on a closed contour from the known values of’
the imaginary part 1s well known. It is convenient for
this calculation to consider the straight line as con-
formably related to a circle, p-plane, by the familiar
transformation

~2
c-T=p+T

where the constant displacement T has been
future convenience in locating the airfoil.
spending points on the straight line and the
equation (2a) reduces to

(2a)

inserted for
For corre-
circle,

g= T + r Cos o

}-

(2b)
f=o

Considered as a function or p, therefore, the C141’z - t
is regular everyhcre outside the circle and is therefore
expressible by the inverse rower series:

(3)

The analogy of equation (~) with the Theodorsen-Garrlck
transformation (reference 2)

which relates con.formally R near circle, pi-plane, to a
circle, p-plane, may be noted. On the circle proper,

Lqlwhere p = Re , and defining cn ~ ~ + Ibn, equa-
tion (3) reduces to two conju~ate Fourier series for the
CM?; namely,

m bn
Ax = a. +~ ~ cos nC?+ ~ — sin nQ

1# 1 Rn
(J+)

4,,
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m bn
Ay =bo+~—cosncp”-~~ sin nCp

1 Rll lW
(5)

These series evidently determine Ax from Ay or vice
versa.

An alternative method of performing this calculation
Is possible. It is kaown that if the reai and imaginary
parts of a function are given by conjugate Fourier series,
as in equations (4) mcl (5), with the constant terms
zera, two integral relations are satisfied. (See, for
example, references 2 and 3; also,appendtx C.) These
relations are

(6)

(7)

Before tho detailed application of the CTJF z - ~
to the solution of’the dl~ect and inverse probiems of
airfoil theory is made, some necessary basic properties
of this function wI1l be discussed.

Airfoil Position for Given CM??

lt IS noted first th~t tho regions at infinity in
the three planes are the same except for a trivial and
arbitrary translation; that is, by equations (l), (2a),
and (3),

Secondly, if an airfoil is to be mapped into a
straight line, it becomes necessary to know the point on
the straip>t line corresponding to the trailing edge of
the airfoil. For a given CMF, Ax(g), Ay(q), and
straight line of length 2r located as in figure 1,
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the airfoil coordinates x, y are obtained from equa-
tions (1) and (2b) as ~ - -

x = T + r cos Q + Ax(V) . (9)

Y = Ay(cP) (lo)

The leading and trailing edges of the airfoil will be
taken as the points corresponding to the extremities of
the airfoil abscissas. The corresponding locations on
the circle are therefore determined by maximizing x
with respect to @ In equation (9). Thus

(11)

.’

The condition (11) yields (usually by graphical deter-
mination) the angles corresponding to the leading and
trailing edges (fig. 1)

..
‘N = ‘6N

}

(12)
QI-lz1 TT+PT

It will be found convenient to so alter the position
and scale of a derived airfoil that, for example, its
chordwise extremities are located at x = *1 and the
trailing edge has the ordinate y = O (to be referred
to as the normal form). The chord c of a derived air-
foil is by definition the difference in airfoil abscissa
extremities, or by equations (12) and (9),

c (=r cos ~ - cos %) ()+Ax ~y - AX(Q (13)

The increase in scale fron c to soresdesired co is
obtained simply by multlpl~lng r, Ax, and Ay by the
factor co/c . The translation necessary to bring the
trailing ed~e of the airfoil to its desired location 1s
then accomplished by adjusting the translation constants T
and bo.

,
.

R
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Velocity Distrlbutlon on Airfoil

Once the CMF Ax(Q), Ay(Q) and the diameter of-
circle r of an airfoil have been determined, the
velocity at a point on its surfaoe is obtained in a well-
known manner as the product of the known velocity at the
corresponding point of the circle and the stretching
factor from the circle to the airfoil; that is,

VZ(Q) = r * VP(Q) (14)

where vpov) is half the velocity on the circle (since
r = 2R) and ds 1s the .elenent of length on the airfoil.

The velocity on the circle VD(Q)S which makes the
point Q =Tf+pT corresponding tb the trailing edge
of the airfo!l a stagnation point (Kutta condition), is

vpm) I
= sin (Q + a) + sin

(a+ %)1 (15)

where a is the angle of attack. The velocities ‘P
and Vz are expressed nondimensionally as fractions of
free-stream velocity. The stretching factor ds/dQ iS
obtained from equations (9) and (10) as

- %=lliFw=f==Fw (16)

The velocity Vz(cp), equation (14), therefore becomes

(17)

This equation is the general expression, in terms of the
CMF, for the veloclty at the surface, equations (9) and
(10), of an arbitrary airfoil. The denominator depends
only on the airfoil geometry, while the numerator depends
also on the an@e of attack. Equation (17) is similar
to the corresponding expression in the Theodorsen-Garrick
method except for the absence of the factor representing
a preliminary transformation from the airfoil to a near
circle.
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The expressions for the lift coefficient and ideal
‘~’angleti-f”attack maybe noted. The ct-rculatloti ~ around
the ai.rfoll is (V is free-stream velocity) .

r=4m RVtgin(a+f3T) (18)

The lift coefficient CL is defined by

Hence

c~=4w~,in&+6T) (19)

where the airfoil chord c is given by equation (13).

The ideal angle d attack (reference 2) is defined
as that angle of attack for which a stagnat?.on point
exists at the leadtng edge; that is, Vz = O for cp= -611
in eqlmtion (17). Hence,

,‘.
Superp~sition of Selutiens

The sum of two analytic functions is an analytic
function; therefore, for a given p-plane cincle, the sum
of two CMF?S is itself a CMF as is also evident from
equations (4) to (’/). l’bus,the CKl?~s Axl +LAyl and

AX2 + i.A72 of two component -airfoils may, for the same r,
be added together to Give a CMF

(
Axl + AX2)+~(AYl+@2)

and thence, by equation (17), an exact velocity distribu-
tion for a resultant airfoil. The resultant profile and
its velocity distribution is a superposition in this
sense of the compqnent profiles and velocity distributions.
Thus, without sacrifice of exactness and with no great
increase of’labor, airfoils may be analyzed and synthe-
sized in terms of ccmqxment- symmetrical thiclmess distri-
butions and mean camber lines, This result provides a
rigorous counterpart of the well-known approximate super-
position methods of thin-airfoil vortex and source-sink
potential theory.
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As a particular case of superposition, a
AX + i Ay may be multiplied by a constant S
resultin~ CM? S Ax + IS AY determines a new

No. I@22a

known CMF
and the

profile by.
the new displacements S Ax, S Ay from points on the -
original straight line. It Is evident that, except for
the corrections (S - 1) Ax to the airfoil abscissas,
this new profile is increased In thiokness and camber
over the ori~inal profile by the factor S. The effect
on the velocity distribution Is that of’multiplying the
derivatives in equ~tlon (17) by S. By virtue of a reduc-
tion in scale by the factor 1/S this profile may also
be regarded as obtainfid from the original one by using
the same 4x, Ay but a length of line 1/S times the
length of the orlGinal one.

The use of superposition as well as the application
of the CMF to some particular airfoils will be illustrated
next.

Application of the Ci,,Fto Some Particular Airfoils

Symmetrical th~c’kness distributions.- The Cartesian
mapping function was calculated for a symmetrical 30-
percent thickness ratio Joukowski profile from the known
conformal correspondence between a Joukowski prof’tle and
a straight line. The CM? is Eivcn in normal form in
teble I. The associated constants ‘o and ‘o are
given in table 11 and the prdile itself, as determined
either from.the standard formulas or from equations (~)
and (10), is shown in figure 2(a). The symmetry of’the
profile required only the calculation of
for U S Q4 18J”.

Ax(T), Ay(g)
The corresponding veloclty distri-

bution (fig. 2(b) ) was obtained from equation (17) by
use of’the computed values of the derivatives. At the
cusped trailing edge the velocity as given by equation (17)
1s Indeterminate; however, the limiting form of equa-
tion (17), deternlned by differentiation of numorutor
and denominator, is

Ices (q + a)l

F%Y+(%T ’21)
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It 1s seen from this expression that the velocity at a
cusped,edge depends on the second derivatives of-the
mapping function, that 1s, on the curvature at the cusp.

The computed second derivatives /&
,

d2Axotld#, d2Ayot d
of the CMF of table I are plotted in figure 3 for a range
of values of Q near 180°.

The CMFIS for symmetrical profiles of’different
thickness ratios werq determlnad from that for the
Joukowskl profile as indicat;d previously in the section
‘tSuperposition of Solutions. The factor u

i
by which

to multiply Axo, AY to obtain a profile o thickness
ratio T 1s obtaine~ from

% Ay~m

r. + Ut
[Ax(%) - H%)] = T——

~

where ~Yo Is the maximum airfoil ordinate Of the known
CHF’ (table I) and the denominator represents the semichord
or the derived profile. The solution for Ut is

(22)

#

7 Values Or Ut were calculated from tlus formula for
@ thickness ratios of’24 percent and 12 percent aild are

given in table II. Tho resulting CMFIS were then nor-
; realized as indicated in the section “Airfoil Position;

‘1

for Given CIT’~so that the actual factors by which to
multiply the original Axo, Ayo wero Aut. These values
are given in table II, together with the associated

, constants 7 and r. The profiles thus determined are
.
1 shown in figure 2(a) and the corresponding veloclt~ dis-

tributions in fi~qme 2(b).
!B

Tho derived prof’iies”are not Joukowslciprofiles.
Tho point of maximum thlcknoss is shifted back along the
chord somewhat as the thickness rotio decreases. Con-
versely, the point of maxinun thickness would be shifted
forward by goin& from a thin Joukowski profile to a
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thicker one. (~is result WaS the reason f’orstarting
from a thick seotion.) The CMF for the 12-percent thick
derived profile is illustrated in figure 4. It is to be
noted that the horizontal displacement function Axot(o)
is symmetrical about Q = m, whereas the vertical d~s-
placement function Ayot(Q) is antisymmetrical about
@=fl@

Mean ca?mber lines.- The CM? was next calculated for
a cir~ar-arc proi’il“5 of 6-percent camber from the known
conformal correspondence between a circular arc and a
straight line. The normalized C?&?and its derivatives
are

t
iven in tRble 111. The C?l??is illustrated in f’ig-

ure Tk,esymmetry in this case is with respect to
w= 96° and @ = 2?0°, the AXOC(Q) being antisymmetrical

and AYOC(V) symmetrical. The CiI?CUkT-fLrC mesn camber
line is shown in figure ~(a) an$ the corresponding
velocity distribution In figure s(b).

Derived mean camber lines were obtained from the CMF
for the circular arc in a manner similar to that for the
symmetrical profiles. The expression determining the
factor Uc for a desired percent camber C is

with the solution for Uc

2Cro cos
Uc =

AYOH - 2C Ax(~T)
(23)

The angle ~ in equation (23) (as in equation (22))
corresponds to the extremity of the derived mean line.
Because the factor Uc is to multiply the derivative

dAxo(Q)/d@, the angle ‘N as dete?nnined by the maxi-

mum condition (11) depends on Uc . One or two trials
are sufficient to determine Uc simultaneously with ~

from equations (23) and (11) for a given desired camber (A
Values of Uc and ~ (also ~ by symmetry) are

given in table IV for derived cambers.of 3 and 9 percent.
The actual multiplying factor to obtain the derived
CMFls -in normal form is given in table IV as Auc.
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The derived camber lines are shown in figure 5 (a).
A Z-t 3s seen that the derived-”oamber lines have been

separated into distinct upper and lower surfaces. Fur-
.. thermore, for the 9-percent camber line the ltlowerlt

surface, that is, the surface corresponding to the lower
part of the straight line or circle,” lies above the
%pper 11surface. Although such a camber line Is physi-
cally meaningless by Itself, nevertheless its CMF can be
compounded with that for a thiclmess distribution to give
a physically real result (if the resultant proftle is a
real one). The velocity distribution of the 3-percent
camber line 1s given in figure b(b). The ltveloci.tydis-
tribution’! of the 9-percent camber lime is included in
figure 5(b) for arithmetical coinparison although it is
physically meaningless for the reason just mentioned.

The velocities at the cusped extremities of the
camber lines are given by equation (21). The second
derivatives of the CMF of table III,were computed. They
are plotted in figure 3 as 2 ford2Axoc/dq)2, d2Ayoc\d@

a range of cu near 180°. These second derivatives, in
combination with those for the symmetrical prof’ile, can
be used to give a more accurate determination of’the
velocity at and near a cusped trailing edge than is
obtained by using equation (17) near the trailing edge.

Combination of’symmetrical profile and mean camber
llne.- ~e~ !s der~~ for the symmetrical profi~es End
=the mean csnber lines can now be combined in varying
proportions to produce airfoils having both thlcbess
and camber. These airfoils may be useful in themselves
or, as in the following sections, may be used as initial
approximations in both the cl:rectand inverse processes.

As an <illustration of’such combinations, the CM)?
of the 12-percent thick s~etrical profile of figure 2(a)
and the CMF of the 6-percent camber circular arc of
figure b(a) were added together. The airfoil prof’ile
thus determined 1s shown in figure 6(a). For comparison,
the airfoil obtained in the manner of thin-airfoil theory
(see,for example,reference 4) b superposition of the
same symmetrical profile and a i b-percent camber cir-

cular arc (in order to duplicate the camber of the exact
airfoil more closely) is indicated In the figure. The
velocity distribution of the dotted airfoil should,
according to thin-airfoil theory,be the sum of the
symmetrical-profile velocity and the increment above the
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free-stream value of’the camber-line velocity. This
velocity distribution, determined from the two component
exact distributions at zero angle of’attack, is shown
dotted in figure 6(b). The exact velocity distribution
of the ‘texactf’airfoil of figure 6(a) was determined
for the same lift coe~ficient (CZ = 0.88, a = 1013?)

from the known CMF. This distribution is shown in
figure 6(b) . The two velocity distributions differ ap-
preciably, although in the directions to be expected
from the differences In shape of the corresponding air-
foils .

It appears that the CMF~s of a relatively small
number of useful thickness distributions and camber lines
would suffice to yield a large number of useful combi-
nations of which the (perfect fluid) characteristics could
be determined exactly.and easil~ in the manner indicated.

The superposition of’solutions can also be used with
the airfoil mapping methods based on the conformal trans-
formation of a near circle to a circle. There is a
decided advantage, however, in working with the airfoil
ordinates directly, both in the facility of the calcula-
tion~ and in the insi@t that is maintained of the rela-
tionship between an airfoil and Its velocity distribution.

THE DIRECT POTENTIAL PROBLEM FOR AIRFOILS

The direct problem for airfoils is that of f’inding
the potential flow past a given arbitrary airfoil section
situated in a uniform free stream. This problem can be
solved by a Cl@ method of successive approximation some-
what similar to tb.atin reference 2.

Method of Solution

Suppose an airfoil to be given as in figure 6(a).
The chord is taken as any strai~t llne such that perpen-
diculars drawn from its extremities are tangent to the
airfoil. For example, the ~’longest-line” chord, that is,
the longest line that can be drawn within the airfoil,
satisfies this definition. The x-axis Is taken along
this chord and the origin is taken at its midpoint.
Suppose, in addition, an initial CMF Ax. and Aye, ,
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.stralght line ?’o#.. and chordwise .$ranglat$o n-constant To
to be given such that the corresponding airfoil has the
same chord and is similar in shape to the given airfoil.
(At the worst the initial airfoil could be the given
chord line Itself.)

At the chordwlse locations Xo (~) of the Initial
airfoil, correspondln

f
to an evenly spaced set of Q-

values by equation (9 , the differences @Q) between

the ordinates Ayl( Q) of the given airfoil and Aye(Q)
of the initial airfoil are measured. The ordinate dif-
ferences 6y@ determine a conjugate set of abscissa
corrections 6X1(Q) in accordance either with equa-
tions (4) and (5) or equation (6). The details of this
calculation are given in appendix A.

The initial semilength of straight line r. corre-
sponding to the initial airfoil is then corrected to rl,
and the translation constant To adjusted to Tls so
that the use of rl with the first approximate CbIF
Axl = Ax. + Oxl, b~il = Ayo + 6Y1 yields a first approxi-
mate airfoil of’which the chordwise extremities coincide
with those of the given airfoil. This correction Is
described in detail presently. If the first approximate
airfoil is not satis~actorily close to the given airfoil,
the procedure is repeated for a second approximate air-
foil, and so on. The successive airfoils thus deter-
mined provide a very useful criterion of convergence to
the final solution; nartlely,the given airfoil. Evidently,
the fundamental relation between an airfoil and its
mapping circle

c1 C2
z- P = co + — +—

P P2+ ● “ “

can be used in the manner indicated to effect directly
the transformation of an airfoil into a circle. It
appears preferable, howeve~ to subtract R2/p from the
second term on the right.and thence to introduce the

R2
straight-line variable ~.p+r.

The exact velocity distribution of any of the
“approximate 1’airfoils (hence the approximate velocity
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distribution of the ~iven airfoil) may be
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obtained from
equation (17) using the derivatives of the corresponding
CM?’m The zero-lift angle Pm to be used In equation (17)
is determined for each appro~lmate airfoil along with the
corresponding correction for r.

The correction for r is necessary because if the
chordwise locations of the first approximate airfoil were .
computed by equation (9) with the original values of r
and T, AX1(Q) being used instead of AxO(Q), the re-
sulting chordwise extremities ~iould.in general not be at
x = *1. It Is therefore necessary to adjust r. and To
such that with the derived Axl, Ayl,

(24)

where %1 and %1 are the angles on the circle corre-

sponding to the extremities of the desired airfoil. ThiS
operation was mentioned in the section ‘tSuperposition of
Solutl.ons.tl It may be termed a horizontal stretching of
the given airfoil. The condition given by equations.(.24)
applied to equation (9) yields

-1 = T1 + rl cos ‘Tl
+ ‘XT’J 1

(25)

Subtraction of the second or these equations from the
first gives for rl

(26)
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Addttlon Of equations (25) gives for T,
- . . . ------ .-”,,

[

Cos %1 + C08 ~T
1+

‘l =-h .. 2

The angles ‘%1 and ~1 in

correspond to the extremities

&

+ Axl @Tl

(‘1

(27) “
2

equations (26) and (27)

of the desired airfoil.
They are given by graphical solution Of equation (11)

dAx@
sin Cp= — (11)

rl dq

Equation (11) must b~ solved simultaneously with equa-
tion (26) for rl, ~Tl, and %l. In practice only a

few successive trials are neoessnry. Thence T, is

obtained by equation (27). The angle WI

this process is equivalent to the zero-lift
alrfoll, equation (12).

det~rmlned in

angle of the

Illustrative Example of’Direct Method

As a numerical illustration of’the direct method the
velocity distribution of the NACA 6512 alrf’oilwas cal-
culated. In order to obtain an initial airi’oil, the CMl?
of the 6-percent camber circular arc (tables III and IV)
was added to the CMF of the 12-percent thick symmetrical
profile, derived from that of table I as indicated in a
previous sectton. Before this addition was made, the
CMF for the circular arc was increased in scale (multi-
plied) by 1.0928/1.0072 to correspond to the same length
of straight line r as the symmetrical profile ClIF. The
normalized resultant CbIFand the associated constants are
given i.ntables V(a) and VI, respectively. The initial
airfoil is shown in figure 7(a).

The given airfoil, NACA 6512, was so rotated through
an angle of -0.88° (nose down) as to be tangent to the
initial airfoil at the leading edge. The convergence
near the leading edge was thereby accelerated. The given
airfoil is shown in this position in figure 7(a). Two
approximations were then carried out In accordance with
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the procedure given in the precedtng section. The numeri-
cal results are given in tables V and VI. The first
approximate airfoil is indicated by the circles in fig-
ure 7(a); the second approximate airfoil was indistin-
guishable to the scale used (chord = 20 in.) from the
given airfoil. The velocity distributions of the inftl.al,
first, and second approximate airfoils are given in fig-
ure 7(b), together with those corresponding to one
approximation by the Theodorsen-Garrick method (refer-
ence 5). The second approximation velocity distribution
differs appreciably from that of the Theodorsen-Garrick
method on the upper surface but agrees fairly well on the
lower surface. The discrepancy for the rearmost 5 percent
of chord on the lower surface appears to be due to lack
of detail in this region tn the ~eodorsen-Garrick cal-
culation.

The convergence of’the CMF method Is seen to be
rapid, considering the approximate nature of the initial
airfoil, although two approximations are required for a
satisfactory result. The second approximation could
probably have been made unnecessary by suitably adjusting
the first increment 871(Q) near the leading and trailing

edges on the upper surface before calculating 5X1(Q).
The direction in which to adjust the increment is obtained
by comparing the thickness of the initial airfoil with
that of the given airfoil in these regions. Because a
thicker section has a greater concentration of chordwise
locations toward the extremities, for a given set of
@ points, than does a thinner section, the chordwise
stations would be expected to be shifted outward as the
thickness of the section Is Increased. The ordinates
Ayl(Q) should therefore have been chosen at chordwise
stations slightly more toward the extremities than those
given by equation (9).

The accuracy of the velocities Is estimated to be
within 1 percent. It was expected, and verified by pre-
liminary calculations, that the results would tend to
be more inaccurate toward the extremities of the airfoil
than near the center. This result is evident from equa-
tion (17). A given inaccuracy in the slopes dAx/dcp and
dAy/dq can produce a large error in the velocity near
the extremities, where sin Q approaches zero. This
disadvantage does not appear in the Theodorsen-Garrick
method, in which sin g is replaced by one. Excessive
error in these regions can be avoided in various ways.
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If, t~e in-itial,s~r$o.11,,for wh.ic.h.the .slo>es dAxo/dQ+.
and dAyo/d@ have presumably bee-ncomputed accurately,
Is a good approximation in these regions, as evidenced
by the smallness of 8X1, ayl ‘compared to Axo, AYo g,.

,, the effect of inaccuracy of the slopes d5x1/dT, oddyl/dq
will be reduced, since they are added to the initial
slopes dAxo/dQ, dAyo/dQm It was to reduce the magnitude
of’the incremental CMF near the leading edge that the
NACA 6512 airfoil was drawn tangent to the initial air-
foil In this region.

The error in the derivatives can also be avoided by
computing them from the differentiated Fourier series
for 8X1, ayl . (See appendix A.) This calculation was
made in the illustrative exmnple, after it was found that
an error of about 5 percent In the velocity on the upper
surface leading edge could be caused by unavoidable
inaccuracy in measuring the incremental slopes.

The fact that the computed derivatives do not repre- .
sent the derivatives of the CMF but rather the deriva-
tive of Its Fourier expansion to a finite number of
terms may introduce inaccuracy. (The derivative Fourier
series converges more slowly than the original series.)
A comparison of the computed derivatives with the measured
slmpes will indicate the limits of error, however, as well
as the true derivative curve.

The importance of kno~i.ng the CMF derivatives ac-
curately may make it desirable to solve the direct
problem from the airfoil slopes, rather than from the
atrfoil itself, as given data. This variation of
technique enables the CMF derivatives rather than the
CMF itself to be approximated Initially. Further
details are given in reference 1.

II - THE INVERSE POTENTIAL PROBLEM OF AIRFOIL THEORY

m The Inverse potential problem of airfoil theory may
be otated as follows: Given the velocity distribution
as a function of percent chord or surface arc of an unknown
airfoil - to derive the airfoil. Before the questions of
existence and uniqueness of a solution to the problem as
thus stated are discussed, several CMF methods of solu-
tion will be outlined and illustrated by numerical

.
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examples. Various previous methods of solution will then
be described briefly and their inherent limitations and
restrictions on the prescribed velocity distribution will
be compared with those of the CMF methods.

The prescribed velocity distribution is assumed to
be either a double-valued continuous function of the
percent chord or a single-valued continuous function of
percent arc. (Isolated dlscontinuities in velocity are,
however, at least in the percent-chord case, admissible.)

CFtlFMethod of P~tentlals

This inverse method is based on the fact that, if
the airfoil and its corresponding flat plate and circle
are immersed in the sane free-stream flows and have the
same ctrculntion, conf’ormall~ corresponding points in
the three planes have the same potential.

Consider first the case where a velocity distribu-
tion corresponding to a symmetrical airfoil at zero lift
is specified as a function of percent chord. If an
initial airfoil is assuned, the prescribed velocity can
be integrated along its surface to yield an approximate
potential distribution as a function of’percent chord.
This potential increases from zero at the leading edge
to a maximum value at the trailing edge. Of fundamental
importance to the success of the method is the fact that
this potential curve depends mainly on the prescribed
velocity distribution and only to a much lesser extent
on the form of the initially assumed a!rfoil. The chord
line of the initial alrfoll taken as the x-axis is next
sufficiently extended that, in the same free-stream flow
as for the airfoil, the potential, which in this case
is simply V~, increases linearly from zero at its
leading edge to the same maximum value at the trailing
edge as exists for the approximate potential curve derived
initially. Horizontal displacements Ax between these
curves are then measured as a function of tha straight-
line abscissas and, hence, as a function of the central
angle Q of the circle corresponding to the straight
line. These horizontal displacements Ax(T), together
with the conjugate function AY(Q) computed therefrom
and the length of’straight line previously determined,
constitute a CMF for an airfoil that is a first approxi-
mation to the unkmown airfoil. The approximation is
based on the use of a more or less arbitrary initial
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airfoil to set up the first
-. exact velocity distribution

21
/

approximate potential. The
o“f-thed~ri-ved-firs-tapproxi-

mate airfoil &an now be computed and compared with-~he.. prescribed veloai.ty. If the agreement is not satisfac-
torily close, the procedure Is repeated, with the airfoil..

,. just derived taking the place of the one initially assumed.

The complication Introduced in.the general case in “
which the prescribed veloclty distribution corresponds
to an Unsymmetrical airfoil with circulation oan be
resolved as follows: It is convenient in this case to
discuss the potentials in the circle plane. The pre-
scribed velocity distribution is transferred to the cirole
plane by means oi’the stretching factor, presumed lmown,
of the Initially assumed alrfoll; that is, equation (1~)
is solved for VP(Q). The first approximate potential
distribution as a function of the central anEle @ is
obtained by integrating Vp(o) through a Q-range of 2Tr
radians (around the airfoil), starting from the value
of q near zero for which Vp(g) is zero (the front
stagnation point). This approximate potential curve has
a ~L~n~m~ value of zero at the front stagnation point,
rises to a maximum for the value of Q near n corre-
sponding to the rear stagnntlon point, then falls to a
minimum for the final v~lu9 of 0 (the front stagnation
point), which is an angle 2Tr radians from the starting
‘O-point. The difference between the final and the initial
potential minimums Is a first approximation to the circul-
ation r.

A circle of such diameter is now derived which, with
this circulation nnd the same free-stream flow as for the
airfoil, yields a potential distribution (henceforth celled
true potential distribution) that has the same maximum
and minimum values as the approximate potential curve
just derived. If the maximum approximate potential is
denoted by roU and the decrease of potential (considered
positive) from the maximum to the final value by roL,
where r. is the diameter of the circle corresponding
to the initial airfoil, the parameter y Is first com-
puted from

a

‘w =U-L
(28)

2(y + cot y) U+L
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by means of figure 8. The desired diameter r Is then
given by

ro(U + L)

r = ~(cos Y + y sin y)
(29)

The parameter y is actually the sum of the angle of
attack and zero-l!f’t angle of the unlmown. airfoil, to a
first approximation; that is,

Y =a+pT (30)

It is related to the circulation r by equation (18).

This procedure for the calculation of the diameter
(see, for example, reference 6) follows easily from the
expression for the potential distribution on a circle,
obtained by integration of equation (15) as

=
[

r. cos y+y sin y- cos @+a)+ (Q+a)sin yl (31)

If the diameter r of the derived circle is much
greater than the d%ameter r. of the circle corresponding
to the initial airfoil, it is desirable to increase the
CMF Axo, Ayo of the initial airfoil by a factor suffi-
cient to modify the initial airfoil such that it corre-
sponds to a circle of diameter r. A new approximate and
true potential distribution is then obtained as described
but by using the modified initial airfoil.

The first approximate horizontal displacement func-
tion is now determined as the sum of the horizontal
displacement AxO(Q) corresponding to the (modified)
Initial airfoil and an increment 6x1(@) produced by
the noncoincidence of the approximate potential distri-
bution @a and the true potential ciistributlon Qt.
This horizontal increment may be measured between the
two potential curves, both considered plotted against
chordwise position in the physical plane. With sufficient
accuracy this increment may be computed as the vertical
distance between the potential curves divided by the
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slope of the ayp.rox@@.te.potent~al.cur-ye;g.~q,ly~.the
prescribed velocity Vz. If, therefore, all quantities
are considered as functions of q

Axl = Ax. + 6X1

@a(o) - Qt(qq
= Ax. +

v@)
(32) .

The ordinate function ~y~(l?) con~ugate to AxI(Q)

cen now be computed and, together with Ax1(Q) and the
diameter r obtained previously, determines the first
approximate airfoil by equations (9) and (10). Calcu-
lation or measurement of the CMF derivatives dAxl/d@,
dAyl/do and the use of equations (11) and (17) then
determine the zero lift angle ~T and the exact velocity
distribution of the first approximate airfoil. The angle
of attack, to a first approximation is given by equa-
tion (30), the value of y derived from equntion (28)
being used. This exact velocity distribution is compared
with that prescribed and, if’the agreement 1s not close
enough, the procedure can be repeated with the f’irst
approximate airfoil as the initial airfoil.

Ln the case where the prescribed velocity is speci-
fied as a function of’percent a~c, then by line integra-
tion of’the prescribed velocity along the percent arc,
the true potential distribution of the unknown airfoil
is known as a function of arc (except for a trivial scale
factor). The maximum and ninlmm values of this potential
distribution then permit the unique determination, by the
calculation previously described, of the circle corre-
sponding conformably to the unknown airfoil. Correlation
of the potential distribution of’this circle with the
potential distribution as a function of arc Initially
calculated therefore yields exactly the potential dlstrl-
butlon of the unknown airfoil as a function of the central
angle Q of the circle. This fact has been noted by
Gebelein (reference 6). The calculation of the diameter r
as outlined above for the percent-chord case 1s thus
unnecessary. The remainder of the procedure is the same,
the successive approximate airfoils now being adjusted
to correspond conformably to this circle. before corre-
lating their percent-arc lengths with the prescribed
velocity distribution in preparation for the next
approximation.

— ... . . . - -,,- —.
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The successive contours determined by the method of
potentials are, of’necessity, closed contours, whether or
not the sequence of contours converges to a solutlon
satisfying (mathematically) the prescribed velocity dis-
tribution. The closure of the contours is a consequence
of the method of setting up the horizontal displace-
ments, Ax(Q), and solving for AY(q), by which the
contour coordinates are obtained as single-valued func-
tions of Q. The necessity for closed contours does not,
however, exclude the possibility of deriving physically
unreal shapes; namely, contours of figure-eight type.
This point will be discussed at greater length later but
it may be remarked here that it is the extra degree of
freedom introduced by tho class of figure-eight type
contours that admits the possibility of’a unique solu-
tion to the inverse problem treated here.

It will have been noticed that, whereas in the direct
method a Ay Is determined from the given data - that is,
the airfoil - nml a Ax is computed therefrom, conversely,
in the inverse method of potentials a Ax is determined
from the given data - that is, the velocity distribution -
and a Ay is computed therefrom. Similarly, just as
the direct problem can also be solved by deriving dAy/dQ
from the given airfoil slopes and thence computing
dAx/dQ, so, conversely, can the inverse problen be solved
by deriving dLx/dg fron the prescribed velocity dis-
tribution and thence computing dAy/d@ . This inverse
method of derivatives will be discussed after some
numerical examplea nre presented, illustrating the nothod
of potentials.

Examples of CMF Method of Potentials

Synmletrical section.- The method of potentials was
applied Iirat to the derivation of’the symmetrical profile
corresponding to the prescribed velocity distribution
shown in figure 9(a). As an initial airfoil the 12-
percent thick profile derived frcm the 30-percent thick
Joukowski profile In part 1 was used. The initial C1:~
and associated constants are given in tnble VII. i!he
initial airfoil and its velocity distribution are shown
in figure 9. The first increuent .CMFand the res-ultant
first approximate airfoil and its exact velocity distri-
bution were calculated by the procedure of the preceding
section. The incremental slopes d6x#dq, d5yl/dQ
were computed and found to approximate the neasured slopes

I
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very closely. The results are presented in table VII
and,flgure 9. It-is seen that the change in velocity
and profile “&&complished by one step-of the>inverse -
process is large; that Is,’the convergence is rapid.
The high velocity of the first point on the upper surface
(Cp= 15°) 1s due to lack or detail in the calculation.
(Twelve points on the upper surface were calculated.)
For practical purposes the nose could be easily modified
to reduce this veloclty if desired without going through
a complete second approximation. .

Mean camber”line for uriiform velocity increment.-
As a second example of inverse CM)?method, the profile
producing tiiform equal &d opposite velocity increments
on upper and lower surfaces was derived. By the methods
of thin-airfoil theory this velocity distribution yields
the so-called logarithmic camber line. The prescribed
velocity distribution 1s indicated in figure 10(a). The
velocity peaks at the extrer.lltlesof the prescribed
velocity curve were assumed in order to compensate for
an expected rounding off of the velocity in this region
in working up from the initial velocity distribution.
The convergence to the prescribed uniform velocity dis-
tribution would thereby be accelerated. The initial
airfoil was taken as t~.e6-percent camber circular arc,
discussed in part I. The initial CMF and its associated
constants are given in tables III and IV. The circular
arc and its velocity distribution are shown In figure 10.

.4first approximation was calculated as outlined in
the previous section. A numerical difficulty appeared
in the process of solving equation (11) for the zero-
lif’tangle of the first approximate airfoil. It appeared
that a 2J-point calculation (12 points by symmetr

a
did

not give sufficient detail in the range w< (p< ~ w
J.c

to yield a reliable solution of equation (11) for the
zero-lift angle. This result was a consequence of the
prescribed velocity discontinuity at the extremities with
the consequent large but local changes in CM.F and profile
shape required in these regions. The solution obtained
for the zero-lift angle was S = 6.1°, which by equa-
tion (19) with r = 1.0043 an~ al = O yielded
Cz = 0.67. The desired Cz, however, 1s 0.80, which
would correspond to pm = 7.27°. It was considered
that a relatively minu~e change in the shape of the
extremities of the derived camber line would alter the
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slope dAxl/dQ in the desired range sufficiently to
yield a zero-lift angle of @T = 7.27°. On the other
hand the effect of such a local change on the CMF as a
whole would be small. The veloclty distributions of the
derived profile were therefore computed for both zero-
lift angles quoted previously.

The results are given in table VIII and in figure 10.
Included for comparison In figure 10(b) (vertical scale
magnified) is the logarithmic mean line of’thin-airfoil
theory, computed for Cz = 0.80. The velocity distri-
bution of the derived shape as calculated for the desired
lift coefficient of c =

k
0.80 is seen to be a satis-

factory approximation o the desired rectangular velocity
distribution. The profile Itself Is seen to be one of .
finite thickness as compared with the single line of
thin-airfoil theory. Airfoils bbtained by superposition
of this t~e of camber line with thickness profiles would
therefore be increased in thiclmess over that of the
basic thickness form.

The changes Zn velocity distribution and in shape
of profile are again seen to be large; that is, the con-
vergence was rapici. As is to be expected, the rapidity
of convergence of’both the direct and inverse methods in
comparable cases j.sabout the same.

CMF Method of Derivatives

Instead of approximating by the method of potentials
to a Cl@?that, when differentiated, yields the prescribed
velocity, the CMF derivatives may be obtained directly.
The controlling equations are equations (17), (9), ~d
a modification of equation (7).

Vz(q))=
Isin (cp+a)+ sin ~a+PmJl

(17)

(7a)
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x-= COS Q+* Ax(Q)
r,-,- -,.-. ... .. ___

(9)

These e uations, together with the auxiliary equations (11)
7and (18 , constitute a set of shultaneous equations from

which the CHF derivative dAx/dq” may be detemined from
a prescribed velocity distribution v= . The corresponding
airfoil Is determined by integration of dAx/dq and its
conjugate dLy/dc9.

Consider first the case where the velocity is speci-
fied as a function of percent arc. As explained in the
pravious section, the constants r and y of’the final
circle corresponding to the unknown atrfoil can in this
case be determined initially. Points of equal potential
along the aro and circle tirethen found, which yield Vz
as a function of q. The angle of attack a in equa-
tion (17) is taken as soue reasonable value and dAx/r d~
determined by successive approximation. In the first
approximation dAy/r dQ may, for example, correspond to
some lmown CMT. Equation (17) is then solved for
dAxl% dcp, for which the conjugate dAy/r dq is calcu-
lated.next and used as a besis for tibetter determination
of dAx/r dq. The &irfoil corr69ponding to any approxi-
mation 1s obtained by inte~ration of dAx\dq and its
conjugate dAy/dq. (Tne method of derivatives may”be
remrded as based on thg use of the function
in-d(z - ~)
. dp ●

This function is regular everywhere outside
iathe circle p = Re , approaches zero at inflnlty, and

reduces to g+l ~ on the circle itself. )

In general the dAx/dq as determined in any approxi-
mation will have an aver~ge value other than zero. The
Ax(o) obtained, say, by integration of its Fourier
series would therefore contain a term proportional to @
in addition to a Fourier series. Thus, Ax(Q) would
not be a single-valued function of’ Q and the resulting
contour would not close. Simply subtracting the average
value of dAx/dq (the constant term In its Fourier series),
however, will close the derived contour. If the method
oonverges, this average value approaches zero in the suc-
cessive approximations.

A
chosen

preliminary over-all adjustment of an initially
CMF may be desirable. ThUS , if dAxl/dQ iS
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calculated in terns of the dAyo/dQ of a previous approxi-
mation and is found to be larger than dAxo/dq) by SOMe
factor, dAyo/dq can be multiplied by this factor and
the calculation of dAxl/dcp repeated.

Although the angle of attack may be arbitrarily set
initially in this calculation it should be so chosen that
the final airfoil will coincide approximately in position
with the initial airfoil. After each calculation of
dAx/dq, the zero-lift angle 5T can be calculated,
equation (11), which thereupon ~ixes a, since y=
is known.

a+~T

If the prescribed velocity distribution is speci-
fied as a function of percent chord, Vz(q) must be
determined in the successive approximations by use of
equation (91. The quantity y = a+pT may be deter-
mined in aach approximation as in the method of potentials
or, in physically real cases, by equation (1$)). The
diameter r is so determined that the successive airfoils
are of a standard chord length.

It is evident from the structure of ;3a:i3~,17)
that near the airfoil extremities where and
in particular at the nose of the airfoil where dAy/dq
Is comparable to dAx/dQ in magnitude, the convergence
by this method (and by the method of potentials) will be
comparatively slow. If modifications to the airfoil only
in the immediate neighborhood of’the nose are required,
it may be more expedient to apply a preliminary Joukowski
transformation, that is, to use these methods with the
Theodorsen-Garrick transformation.

An example of’the use of the CMF method of deriva-
tives to solve an inverse problem is given In reference 1
for the case of a cascade of airfoils.

Method of Betz

In the inverse method of Betz. (reference 7) an air-
foil and its velocity distribution are assumed known
(fig. 11) and a desired velocity is specified as a func-
tion of percent arc. The new velocity and length of arc
are specified in such a way that the extremities of
potential are the same as on the known airfoil. Both
lmown and unknown airfoils then transform into ~he same
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circle and, in particular, the velocities at points of
equal potential on the two profiles can be found.-, !.- ..- . .. ..-,-... . .

In order to detemine the profile corresponding to
the new veloclty, the coznplexdisplacement Z2 - Z1
between points of equal.potential on the two profiles is
expressed as a function of the corresponding complex
velocities (denoted by Vz) thus,

d

( )

dz2

~zz-zl =–-’= %%-’=:-’dzl

Hence

Z2 -z, =Jzl(~- 1)% (33)

where the integration is cerrled out along the known pro-
file from the trailing edge, which is taken as coincident ‘
for the two eirfoils, to the point 21 ● The complex

f’mction Vzlpzz is determined epproximotely from the

II

v=
known ratio ~ corresponding to the points of equal

‘JZ2
potential by the argument that, inasmuch as the two pro-
files heve neerly ~~ same slope at corresponding points,

the reel part of #- - 1 is given by IIEL-1.(qqlis
2 Vz

assumption, like the approximations in the %? methods,
is least valid at the nose of the airfoil. The function
22 - 21 is in fact a Cartesian mapping function. ) The

imaginary part is then computed as the conjugate function,
equation (7).

In addition to the restrictions on the velocity dis-
tribution mentioned initially, further conditions must
be met in this method, if cl~sed
tained. Thus, the condition for

contours are to be ob-
closure of contour,

)ldzl=O (34)
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and the required coincidence of’ Vz
.2

and Vzl at

Infinity, lead to the following three restrictions on
the real part R(Q) of’the integrand in equation (34)
considered as a function of (p in the circle plane,

J
2TT

f
2TT

J’

2Tr
R(v)dcP= R(Q) CQS @ dq= R(Q) sin qd~=~ (35)

o 0 0

Method of Weinig and Gebelein

The method of’Weinig and Gebelein (reference 6) may
be described essentially as follows: The given data are
the same as in the Betz method. Consider the function

Vz

II

Vz

(
log”== log ~ -i P

Vz1 Vz 22 - %)1
(36)

where P22 and B21 are the slopes at corresponding

points of the two airi’oils (fig. 11). II
Since vz2 and

IIVz1
are known functions of Q with the data as given,

Vz
and since log & !.sre@ar outside the circle,

1

8Z2 - 921 can be calculated as the function conjugate to

II

‘z
log ~ . The angle P being known, ~z2 is thereby

Vzl 21

determined and hence, by simple integration, the unknown
airfoil coordinates are obtained.

As in the Bstz method, the condition for closure of
the desired contour

Hdz =
J

!&&dp= ~dp =()

c ~ dw/dz c
(57)

leads to the additional restrictions on the prescribed
velocity distribution,
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where y is given by

Discuss ion of

= .0 ..* ._.. . . ,,-

.-

Q)dq)= ~sln 2y 1“
---

Q dq = -m(l - COS 27)

(38)

equation (30).

the Various Inverse Methods

The methods of ~otz and of WeiniE-Gebelein may be
somewhat narrower in sco~o than the CKF nethods. The use
of mappin~ functions such as In equations (33) and (56)
is based on the ability to specify dz2/dz~ unambiguous ly
In the cgruespondinq regions. This requirement appears
to restrict the contours obtainable b: these nethods to
those bounding simply conrmcted regions. l“urther investi-
gation of tl-ispoint is necessary, however. By the CEF
methods, figure-eight contours l.ave arisen In the course
of solution of both the direct and the inverse problems.
(Ses the ‘J-percent camber derived mean line (fi~. 5(a))
and the illustrative examples in reference 1.) Such con-
tours ware first encount~red as preliminary results
(unnubli.shed) in using the method of potentials with the
Theodorsen-Garrlck transf’ormatlon. The CMF apparently
makes no fundamental mathematical distinction between simply
connected and figure-efght contours, for although z - ~
must be a single-valued function of z, ~, or Ps the
coordinate z itself’1s of the same character as c and
the latter has two Riemann sheets at its disposal in
consequence of the Joukowskl transformation from the ~-
to the p-plane.

The methods of Betz and of Weinlg-Gebel.e$n require
the numerically difficult closuz-e conditions bquations (35)
and (36))to be satisfied in advance. If the methods are
worked through for prescribed velocity distributions
which do not stitisf’ytheso conditions, it appears that



open oontours result. In the CM? methods, .however, there
is either no closure condition (method of potentials) or
a numerically simp16 one (method of derivatives):

[
This simple closure condition in the method of deriva-
tivesis fundamentally a consequence of the fact that

the required absence of the constant term in the inverse
power series for the C?-!Fderivative-mapping function-~.

d(z - c),
.

(
ip ~p mentioned previously ) automatically ex-

.
eludes the inverse first power (the-residue term) from
the power series for d(z - C)/dp.

1
Thus, physically

impossible velocity distributions ead to open contours
in the Betz-Weinig-Gebelein methods and to figure-eight
contours in the CMF methods (if the latter converge).
From the practical point of view in these cases, it may
be easier to obtain the airfoil corresponding to the
“best possible~’ physically attainable velocity distri-
bution by the CMF methods than by the others. If the
succession of airfoils determined by an inverse CM? method
is seen to tend toward the development of a figure-eight,
the successive approximations can be stopped at the ‘~best
possible” physically real airfoil.

As to the existence and uniqueness of a solution to
the inverse problem as stated, a rigorous discussion of
the solutions, for a prescribed velocity distribution,
of the controlling equations (17), (7a), and (9) is
lacking. For physically possible velocity distributions,
however, specified as a fhnction of percent arc, the
Weinig-Gebelein method shows that there is one and only
one airfoil as a solution. If, however, the velocity is
specified as a function of percent chord, some further
condition is necessary. This requirement is evident from
the fact thnt one velocity distribution for an airfoil
can, for differently chosen chords, be expressed as a
different function of percent chord in each case. One
chord with a given velocity as a function of percent
chord can therefore have more than one corresponding
airfoil. There is reason to suppose that the further
condition for uniqueness of solution in this case is,
the chord being defined as in the section ‘lTheDirect
Potential Problem for Airfoils,” that the ordinates to
the airfoil at the chordwise extremities be specified.
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- ,. . .. .- .,.~orn-theexperience with the CMF methods gained to
date, It is beli.dv-e-d-tlidttb a velocity” dlstrlbutlon
specified as at the beginning of part II, and with the
f’urther condition mentioned in the percent-chord case”,
there corresponds one and only one closed contour satis-
fying the (X@ system of equations, It is furthermore
believed that the CNF methods are flexible enourh to
converge to
aerodynadc

this solutlon In at least thoso oas~s of
interest.

CONCLUSIONS

“ 1. The conf’ormal transf’ormatlon of an airfoil to
a straight line by tho Cartesian mapping function (CMF)
method results in simpler numerical solutions of the
direct and inverse potential problems for airfoils than
have been hitherto available.

2. The uso of superposition with the CMF method
for airfoils provides a rigorous counterpart of the
approximate methods oi’thin-airfoil theory.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Va.
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APPENDIX A

THE CALCULATION

BY THE

OF CONJUGATE FUNCTIONS

RUNGE SCHEDULE

The basic calculation for the type of mapping func-
tion treated in this paper and In reference 2 consists
of the computation of the real part of an analytic func-
tion on a circle, given the imaginary part, or vice
versa. To this end the conjugate Fourier series, equa-
tions (4) and (5), or the conjugate integral relations,
equations (6) and (7),are available. This type of’cal-
culation appears to be fundamental in many kinds of
two-dimensional potential problems. For example, the
solution of the integral equation relating normal induced
velocity to circulation in lifting-line theory can be
solved easily by a method of successive approximation
if the transformation from the lllifting linellto the
circle is known. Quicker methods of calculating a func-
tion from its conjugate than those given in this appendix
or in reference 2 would therefore be hi~ly useful.

The use of the Fourier series rather than the
integral relations in the calculations of this paper was
based on the following consideration. Because the func-
tion 1/2 is re@ar outside the unit circle, the real
and imaginary parts of l/z on the unit circle, namel ,
Cos Q and -sin Q, r
(7)9

satisfy the integral relations (6 ,
The substitution of -sin Q for Ay in equa-

tion (6) and subsequent numerical evaluation by the 20-
point method of reference 2 gave results thut were higher
than cos Q by a constant error of 2.8 percent. Evalua-
tion by a 40-point method reduced. theiverrorby half, or
to 1.4 percent. By the Fourier series, on the other hand,
the first harmonic (a one-point method) suff’icesto give
exact results in this case. It appears, therefore, that
when the given real function is expressible in terms of
a small number of harmonics, as is the case in airfoil
applications, the Fourier series method is preferable to
the use of the integral relations.

The Runge schedule offers a convenient means of
carrying out the basic calculation of mapping functions,
namely, the analysis of a periodic function into its
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Fourier series and the synthesis of a Fourier series
into a function. The theory and use of the schedule Is

. .. . described, ton example, in.reference .8, whe<re$n are al~o
given schedules for 12-, 24-, 36-,.~d 72-point harmonic
analyses.

The necessary analyses and syntheses in the direct
and inverse CMF methbds are carried out in accordance
with equations (4) and (~) and their derivatives.
Table IX contains the sc-hemeof substitution tnto the
Runge schedule, table X, for the various CMF methods.
In the direct method, for example, the set of values
5y/12 corresponding to the evenly spaced Q-values is
substituted into the y spaces at the beginning of the
sum-table. The sums ma differences of these quantities
are then obtained as directed at the left of the indi-
vidual tables and substituted into the succeeding tables.
In this wa~ the entire sum-table is filled out. Before
the product-table is used, the sum-table should be checked.

The quantities sllrroundedby the heavy lines in the
sum-table are next multiplied by the proper factors at
the left of the product-table and the results entered
in the appropriate spuces as indicated by the letters
at the left of the individual product-spaces. A heavy
horizontal line at the lower laft edge of a product-
space indicates that the corresponding product has
already been obtained in a previous space ir,the same
row. A heavy vertical line along the left edgs of a
product-space is used to e~.lphasizethat the negative
value of’the product of the sum-table quantity and the
product-table f~ictor is to be entered. The sums of the
product-table columns are then entered in the I, II, III,
and IV spaces. A check on the work of the product-table
up to this point is provided by the columns at the right.
The sums and differences of the I, II, III, and IV quan~
tities complete the product-table and give the Fourier
coefficients %) bn corresponding to dy.

In order to perform a synthesis calculation from a
aet of Fourier coefficients an~ bn to the values of the
corresponding function at the even %polnts, the coef-
ficients an, bn are entered in the d and D spaces,
respectively, in the sum-table, and the remainder of the
sum-table and the product-table worked through as before.
The final values in the an, bn spaces of the product-
table are then entered In the d and D spaces at the
beginning of the sum-table nnd the sums and differences
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obtained as Indicated by the s~thesls column at the
left. (Note tlmt do and d12 are”to be multiplied
by 2.) The resulting yn qu~titles are the desired
values of’the function.

The numerical values in tables X(a) and (b) illus-
trate the process of obtaining 8xl(~) from byl(V ) in
the first approximation by the direct CMF method for the
NACA 6512 airfoil.
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APPENDIX B
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THE MAPPING OF MORE GENERAL REGIONS

Simply Connected Regions

If the CMF method is applied to the mapping of a
simply connected boundary with a vertical discontinuity,
such as a rectangle or an lnflnite line with a vertical
step, the ambiguity of the ordinate Ay at the discon-
tinuity will prevent an automatio and rapid convergence
of the method. Although the difficulty could be lessened
in particular cases such as for rectangles by taking the
diagonal as x-axis, thus removing the vertical discon-
tinuity, or by using symmetry, as with squares, It is
evident that in general a reference shape particularly
suited to the contour under investigation is needed.
The circle has been nhown in reference 2 to be a good
reference shape for tb.esquare. It could be expected
therefore that an ellipse would be a good reference shape
for the rectansle. Furthermore, just as the mapping
function based on the circle was formed of an angular
displacement and a radial displacement, the mapping
function based on the elll~se should be formed cf dis-
placements along and orthogonal to the ellipse, that is,
should be specified by elliptic coordinates. The speci-
fication of a figure by elllptic coordinates (~, B) in
the physical plane z is equivalent, however, to the
transformation of the figure to a t!-plane by the two
transformations

!lr+’ie
z = pf +.* where P’ = e

t? = log pf where tl =*+ie
}

(39)

and specifying the transformed figure by the Cartesian
coordinates of the tt-plane (w, e). TIM rectangle under
consideration will be a near-circular shape in the pl-
plane and a near-strai@t line shape in the t?-plane.
The mapping of the rectangle by means of an elliptic
mapping function in the physical plane is thereforo seen
to be accomplished by the Theodorsen-Garrick method in
the near-circle p?-plane and by the CMF method In the
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near-straight line t’-plane. From this point of view,
therefore, the Theodorsen-Garrick method consists of
specifying an airfoil in the ~hysical plane by elliptic
coordinates, i’orming th? corresponding elliptic mapping
function (w - *O) - i~, which conformall.y relates the
airfoil to an ellipse or Joukowski airfoil as a basic
shape, and expressing the elliptic mapping function as a
regular function outside the circle. On the other hand,
in the t? = log p!-plane the Theodorsen-Garrick method
consists of the transformation of the near-straight
line ~(e) to the straight line ~. = Constant by means
of what is now the CM? (0 - W()) - ic. Thus, the
Theodorsen-Garrick method may be regarded as a form of
the CMF method, in whioh log p? takes the place of’ z
and log p, the place of !.

“ The mapping of simpl~ connected regj.onsby dif-
ference mapping functions based on the curvilinear co-
ordinates appropriate to the particular reference shape
considered i.stherefore equlvHlent to using the CNF dif-
ference function z - ~ in the plane of the near-straight
line into which the reference shape is initially trans-
formed.

Mapping of the Entire Field

The Fo~-ier series representation of mapping func-
tions, equations ok) and (5), enables the calculation of
corresponding points in the two regions to be made, once
the correspondence of the boundaries has been calculated.
By the latter calculation the coefficients an, bn and
the radius R of the circle of correspondence have bden
determined. If now a larger radius Rt > R be substi-
tuted for R in equations (4) and (5), the resulting
synthesis of the Fourier series will yield the mapping
function for the circle of radius Rf; that is, will
determine points in the given plane corresponding to the
points in the circle plane at the distance RI from the
origin. It is necessary, of course, to use the mapping
function in conjunction with the shape in the physical
plane correspondhg to the larger circle. In this way the
entire corresponding fields can be mapped out. It may
be noted that substitution of R? < R for R in equa-
tions (4) and (5) enables the mapping of those corre-
sponding points inside the original contours for which
the resulting Fourier series converge.
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.
It appears to be mor~ difficult to find the point

in the circle plane corresponding to a poiut of’the given
.- plane tharrvice .versq. ,This calculation may, however,

be accomplished by a method of successive ‘approximations.
For example, if the given plane is that of a near circle
the polar coordinates of the given pofnt in the near-
circle plane are assumed to be a first approximation to
the coordinates R? and Q of’the desired point In the
circle lane.

t
Substitution or these values into equa-

tions ( ) and (5) yields a first approximate IWpphg
function which can be used to correct the coordinates RI
and m, etc.

Biplanes

In the case of’the biplane arrangement
be set up directly in the physical plane In
as for the single airfoil. In place of the

the CMF may .
the same way
simple trans-

formation from--straight line to-circle, however; the
transformation from the two extended chord lines ot the
airfoils to two concentric circles is used. 1%.istrans-
formation is derived in referenca g. The CMF method for
biplanes bears the same relation to tlm nethod of ref-
erence 9 that the CMF method for monoplane airfoils bears
to the Theodorsen-Garrick method (reference 2).

FOP biplanes (fl~. 12) the CMF z - !, being regular
in the region outside the two straight lines, is regular
in the annular region of the p-plane and consequently 1s
expressible as a Laurent series in p

00

z-
Z

t= ~

Cn =~+ibn 1
If, for the inner circle, the relationship is written

z- ( = Axl + i Ayl

\ (b)

(40)where

J
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and for the outer circle

z -l= Ax2+i Ay2

P = R2eiv

there is obta?.ned, upon
and reduction
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1
substitution into equation

tn-a -.

xan + a-n

E

bn - b-n
Axl(~)=ao+ coa nq + —

Rln Rln
1 1
A. J.

m C8

u ‘
‘a +a.

r
bn - b-n

Ax2(cp)=ao+ cos nq+
R2n L

~2n

1
.

m

E bn + b.n
AY1(Q) =bo+ ——

Rln
1

co

E
—.

bn + b-n

z

an - a-n
Ay2(@=bo+ — cos ng -

R2n R2n
1 1

(42)

(l+o)

(43a)

(k3b)

(43C)

(43d)

Those equations are the
equ~.tlons (4) and (5).
tlons may be derived as

~%neralization to the biplane of
The corresponding integral rela-—
in reference 9. ‘-

The solution of equ~tions (43) in either the direct
or the inverse problem may be accomplished as before by
successive approxirrmtiong. For example, in the direct -
me~hod the two airfoils are given. If no initial approxi-
mation biplane were available, the two chord lines would
be taken as the initial straight lines. By the trans-
forruation of reference 9 this fixes the chordwise loca- “
tions on the straight lines cm?responding to a set of
evenly spaced Q points on the concentric circles. The
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ordinates AY1(Q) can therefore be measured, which
determines by analysis and synthesis of equa-!Y2(?I ,.w. ......-..-
tlons (43c) and (~~3d),respectively. “(Tliera-dIusratfo

R2/% is fixed by the initial transformation from the
straight lines to the concentric circles.) These Ay2(cP)
values then determine a set of AX2(Q) values by the
given shape of the second airfoil and the lmown chordwise
locations of its first approximation straight line.
Analysis of AX9(Q) and subsequent swthesis Of AxT(Q)
by equations (@b) and (J3a), respectively, determln~s a“
correction to RI by a horizontal stretching process

(constant Ax, A; - adjustuent of rl ) to maintain the
given airfoil chord. The procedure Is now repeated with
AY2(Q) as the initial set of measured ordinates that
determines Ayl(Q), Ax@), and AX2(Q) as before. The

radius R2 can now be similarly corrected. This step
completes the first approximation. For the second approxi-
mation a new correspondence between the corrected straight
lines and the concentric circles is calculated and the
procedure repeated.

The Inverse problem could also be solved by methods
similar to those given for the isolated airfoil. sup-
pose, for example, a wing section were given and it were
desired to derive a slat of gl.venchord and given approxi-
mate location and having a prescribed velocity distrl-
buti.on. The method of surface potentials, for example,
enables the calculation of a first approximate AX1(Q)

(subscript 1 refers to slat). The initial correspondence
of points between the straight linas and concentric
circles, and therefore also R2/Rl , being determined by
the initially assumed straight lines, the function AX2(Q)

is thereupon obtained by analysis and synthesis of equa-
tions (L3a) and (L3b), respectively. The horizontal dis-
placement Ax2 (q) thence determines AY2( Q) by the
bown shape of the main wing section. The determination
of Ayl(Q ) by analysis and synthesis of equations (J3d)
and (43c) completes the calculation of the first approxi-
mate slat section, for which the exact velocity distri-
bution can now also be calculated. If the main wing
section were also unknown then the wing section above Is
regarded as an initial approximation, the role of the two
airfoils Is reversed, and the procedure repeated to com-
plete the first approximation.
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The CMF method can be generalized in the same manner
for multiply connectod re Ions. The transformation from
the n reference shapes fsuch as straight lines) to n
circles being presumed known, the Cl@?can be set up as a
series convergent In the region between the n circles,
and the mapping function for each boundary explicitly
expressed by allowing the coordinate vector to assume its
value on each boundary in turn. A method of successive
approximation for the solution of the resulting equations
depending on the particular problem under consideration
would then be established.

Cascade of Airfoils

A simplified but practically important n-body probleq
namely, the cascade of airfoils, may be mentioned finally.

The reference shape into which the cascade of air-
foils, figure 13, is to be transfommd is chosen as the
cascade of stright lines coinciding with the axtended
chord llnes of the airfoils of the cascade. The trans-
formation from the cascade of straight lines to a single
circle is well-known, reference 10. The CM? chosen as
Indicated in figure 15 is therefore expressible as an
inverse power series in the cirCle plane findthe resulting
procedure in either the direct or the inverse problem is
seen to be essentially the same as for isolated airfoils.
The detailed application of tineCMF to cascades of’air-
foils Is given in reference 1.
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.APPENDIX C
-“ . .

TBE DETERMINATION OF MAPPING FUNCTIONS BY THE

CAUCHY INTEGRAL FORm

The foregoing methods of conformal transformation
have been presented from the point of view of represen-
tation of the various mapping functions as infinite
series. In particular, the expression of the Carteaslan
mapping function as an inverse power series valid every-
where outside and on a circle led to the Fourier series
representation for the CMF on the circle Itself. The
integral formula representation was then obtained from
the )?ourier series by the nethod of reference 3. It iS
of Interest to see how the integral relations (6) and (7)
can be derived diractly from the Cauchy integral formula
for a fuiiction regular outside a circle. (These integral
relations have also been derived by Iletz,reference 7,
by a hydrociynamical argument.) Since the applicability
of the Cauchy lnte.~r~lformula is not restricted to
circular boundaries, howe~rer, the results will he capable
of generalization, in principle at least, to arbitrary
simply and multiply comected regions.

The CauchyJ integral i’ormulagives the values of an
analytic function f(p) within a simply connected do-
main D in terms of its values f(t) on the boundary
of the domain as

sf(p) = & ~dt
-P

(u)

where the path of integration is counterclockwise around
the boundary. Consider the domain D outside the simple
closed boundary C in the p-plane (fig. fl~). This domain
can be made slnply connected by an outer boundary B and
the cuts between the two boundaries, as indicated by the
dotted lines. The Cauchy integral formula for the func-
tion f(p) at an interior point p of the domain D,
in terms of Its values on the boundary Is

sf(t)
f(p) = * y

1dt+—

s

w ~t
2Tri t-p

(45)
c

-P
B
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where the equal and opposite integrals along the cuts
have been omitted. The paths of integration are indicated
by the arrows in figure 1~~. The function f’(p) is as-
sumed to be regular everywhere outside the boundary C
and in particular to approach the limiting value fm as

If the boundar~ B is enlarged indefinitely
~h~~~tegrand of’the second integral ofequatlon (45)
approaches fro/t and thus

(M)

The variable p will now be made to approach a point t~
on the boundary C, and equation (45) will consequently
reduce to an integral equation for the boundary values
of a function regular everywhere outs:de and on the boun-
dary. In order to evaluate properly the contribution of’
the remaining (first) Integral of equation (.45)in the
neighborhood of t!, the boundary C is modified as
indicated in figure lb. The point p is made the center
of a semi.circle whose ends are f’aired into the original
bcnzndary. As p~t?, the modified bounclory approaches
coincidence with the orii~inalboundary. The integral
over the modified boundary is now evaluated as the sum
of the integral over the semicircle, which in the limit.

.
is half the residue of the intecrand or ~f’(t~), and the

2
integral over the r~st of the path, which in the limit
is analogous to the Cauchy principal value of a real
definite integral of which the integrand becomes infinite
at some point in the intervsl of integration. Equa-
tion (45] therefore becomes, in the l~mit,

“f(tf) 1

s

f(t)=—
2

—dt+fa
2Tlict-tf

In addition, there is the auxiliary condition that

1 J’f(t)-m (j
~dt=fm

(47)

(48)

which follows from the f~ct that f(n) is remlar every-
where outside the boundary C. Eq~t~on (L7)-is well
known in the theory of functions ot’a complex variable.
(See reference 11.j

.
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If, now, the function f(p) is taken as the Cartesian
napping function z-t” or, on the boundary,

f(t) =Ax+i&jy (49)

~d if, further, the boundary C is taken as a circle
with origin at the center,

(50)

substitution of equations (49) and (50) into equation (47)
and u-sing equation (48) (with f = O) leads to the integ-
ral relations (6) and (7). If %he polar mappi~ func- “ ‘

~~”~ub~~ft~e~~oj‘c = ‘w- ‘o) - ‘(~ ‘ e ) (rof’eren~e 2)f(t), the Theodorsen-Garrick Integral
relations me obtnined.

The Cauchy integral formula has already been applied
(reference 12) to problems of’conformal mapping in the
manner just indicated. Bergman has included in refer-
ence 12 (chapter XI) contributions of two Russian authors,
Gers@orin and Krylov. In reference 12 the mapping func-
tion from a circle to a near circle was taken in the l’orm
log p. The resulting inte~ral equation does not appear
to be as convenient as thoseof the CMF methods. The use

of folnns such as 10g$f3r Z- C are not only accurate

numerically since they-express changes in the coordinates
of the boundaries, but also they lead to pairs of integral
equations which contain the solutions of both the direct
and the inverse potential problems.

From the analysis given It appears possible to trans-
form conformably from one boundary to another without
requiring the transformation from either boundary to a
circle, since the boundary C in equation (47) can be
rather arbitrary and f(t) oan be taken as a mapping
function from this boundary to another arbitrary one.
The resulting integral equation for the mapping function
is, however, not as easy to solve numerically as when the
boundary C is a circle.

. ., ,. .-.,,-- --., .,----- . . . . .. . ... . . . . . . .,mmmmmm-m.-
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Once the conformal correspondence between two boun-
daries is known, corresponding points outside the boun-
daries can be detemined by the Cauchy integral formula
(44). It is noted that the Cauchy integral gives the
correspondence of individual pairs of points rather than
the correspondence of entire boundaries at once, which
is given by the Fourier series representation. Further-
more, the possibility exists of determining pairs of
corresponding points inside the given boundaries by the
Cauchy integral, that is, of analytically continuing the
conformal transformation beyond the original domains.
For if the transformation-from a boundary C in a
p-plane to a boundary C? in a pi-plane were known, the
outside regions corresponding, then the correspondence
between a boundary A internal to C and a boundary Al
internal to C?, if it existed, could be determined by
an application of the Cauchy integral formula to the
region bounded by A and C.

For exanple, if the boundaries A and C are taken
as concentric-circles and the mapping

r(p) = log *

=$.i~=(~-~)-l(g

function as

- e) (51)

in the notation of’figure 15, the Cauchy integral formula
applied to the annular region in the p-plane (assumed
free of singularities of the mapping function) yields,
In the limit as the variable point p approaches the

(5*)
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In addition, the condition of’regularity of the f’umtion
f’(p)in the-annular
tions

region yleld~ the a&iliary condi-

.

1 n 21f

In the problem under consideration,the

*OVPO) - i~o(~o) .

(53)

mapping function

for the outer boundaries Is known. The radii e%o, exl
of the concentric circles are given. The second ktegrals
of equations (52) are thiusknown functions of QIU Equa-
tions (52a) and (52b) therefore constitute a pair of
integral equations, similar to those of Theodorsen-GarricJq
for the mapping function ~1(~1~ - i~l(gl), perta~ing
to the inner boundaries.

It is noted that if the variable point p of the
Cauchy tntegral fomula for the annular region is made
to anproaoh the outer boundary C, then two additional
integral equations similar to equations (52a) and (52b)
are obtained. These equations, together with equa-
tions (53), are a generalization to the case of ring
regions of the corresponding Theodorsen-Garrick
equations for simply connected regions and can be used “
for the conformal mapping of near circular ring regions.

. . . . . .. . .. . ...- —----- .-- —---- -— ---- ----——- -— ------ —----- ------ --------
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TABLE I

CARTESIAN MAPTTNG F’UNCTZON FOR SYMMETRICAL

30-PERCENT TEICKNESS J@UKOWSRI PRO.FILE

(rad~ans )
~.

ox+

1

2

3

4

5

6

7

8

9

10

11

12

Ax.
———

-0.319

-.3@

-.258

-.190

-.101

-.00724

.0798

● 148

● 169

.197

.179

● 154

● 1J+2

o

.0964

.la2

.250

.287

.295

.270

.213

.150

.Oalo

,0291

.00412

0

‘ABLE II

dAxo/dq

o

.119

.226

.309

.352

.352

.3*

.212

.0916

-.0261

-.0958

-.0824

0

50

\

dAyo/d(p’

0.375

9355

.296

.206

.0894

-.0351

-.149

-.238

-.272

-.240

-.149

-.0346

0

CONSTANTS USED WITH CMF OF TABLE I

Profile T“ Aut
QN qT

T r
(*: (~~ %

Joukowski 0.30 1.000 0.0887 1.230 0 180 1.000

Derived ●24 .805 .0716 1.185 0 180 .835

Derived ● 12 .4o2 .0357 1.0928 0 180 9453

l?ATIOIULADVIS(RY COMMITTEE FCR AERONAUTICS
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NACA ARR No. 14B22k 51

TABLE III

CMF FOR 6-PERCENT-CAMBER cIRCH-ARC PROF~

Jm!iLQd
6+

7

8

9

10

11

12

13

14

15

16

17

18

Profile

Derived

Circular
arc

Derived

Ax.

o

.0270

.0482

.0592

.0565

.0408

● Oil@

-.0170

-.0439

- ● 0587

-.0552

-,0335

0

~7~

0.120

.14 “

,0953

.0694

.0405

.0160

. oo~69

.00246

● 0194

● 0490

. oa28

.110

.120

dAxo/dq’

0.108

.0960

.0638

,0171

-.0363

-.0844

-.115

-.117

-.0852

-.0239

● 0506

.113

.136

dOo/@

0.

-.0484

-.0871

-.109

-.106

-.0781

-.0279

● 0346

.0926

.128

.123

.0756

0
—

TABLE IV

CONSTANTS USED WITH CMF OF’ TABLE III

3

6

9

d+ rl(n~)l(:g)l(:i)lc,~
0.502 0.501 0 1.0052 -3.37 183.37 0 0.37

1.000 1.000 0 1.0072 -6.84 186.84 0
● 75

1.502 1.499 0 1.0050 -10.26 190.26 0 -------

I NATIONAL ADWSORY COMMITTEE FCR AERONAUTICS
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TABLE V

-- ---——==+._

TRE DIRECT CMF ME!EIODFOR THE NACA 6512 AIRFOILa

NATN)NALADVISORY
I’wqm FOPAFR(INAWICSTnfkhl Annroxfmatlon”—.-—.———_rr- -_-—--—-—-— --

(rad!ans) Axo AyO
dA+ dAyo

xi k. Vo
y ~ (cl = 1.5)

OX* -00145 0,0018 -0.126 0.183 0.992 0.201 1.633
1 -0168 .0565 -.0438 .229 ●931 .364
2

1.600
-.166 .118 .0520 .236 .823 ● 5m 1.596

3 -.142 .177 .144 .203 .672 .605 1.651
4 -.0935 .221 .211 .131 .493 .685 1.656
5 -.0325 .244 .248 .0388 .288 “.742 1.625

6 .0324 .241 .241 -.0606 .0678 .783 1.546
.0898 .213 .191 -.150 -0160 .804 1.428

: .129 .165 ● 107 ..206 -.386 .791 1.291
.145 ● 109 ●0081 -.216 -.599 .727

1: .134
1.156

.0561 -.0786 -.122 -.784 c582 1.059

11 .107 .0192 -.126 -.0895 -.921 .382 .958
12 .0730 .0018 -.126 -.0302 -.993 .118 .891
13 .0439 .0010 -.0948 .0239 -.984 ● 174 .853
14 .0246 .0094 -.0543 .0410 -.894 .452 .834
15 .0156 .0207 -.0155 .0432 -.728 .694 .814

16 .0162 .0297 .0182 .0245 -*499 .883 ;793
.0236 .0319 .0368 -.0138 -.226 .999 .773

H .0324 .0218 .0252 -.0606 .0678 1.024 .759
19 .0337 .0008 -.0199 -.0970 .354 .952 .750
20 .0195 -.0263 -.0872 -.0987 .555 .792 .742
21 -.0128 -.0479 -.151 -.0566 .801 .572 .711

-.0566 -.0528 -.185 .0186 .933 .332 ● 551
:: -.105 -.0364 -.177 .106 .994 .138 .493

z
o.

aCMFfs of table V arewithreferenoeto chordrotated0.88°countercloclmlnefmm ‘longest-llnew
chord.

m
NJ
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ox%
1
2
3
4
5

6
7
8
9
10

11
12
L3
14
15

16
17
L8
19
)0

?1
?2
!3

0.0018

.055

.106

.153

.189

.209

.213

.200
●170
.125
●075

.030
● 003
3
.0057
.015

●020
.014
-.007
-.035
-.059

-.078
-.071
-.043

TABLE V

THE DIRECTCMF METHOD FOR THE NACA 6512 AIRFOILa- Contimmd

8y’1

o

-.0016
-.0123
-.0243
-.0319
-.0347

-.0276
-.0126
.0030
.0163
.0189

.0108

.0012
-.002
-.0037
-00057

-● 0097
-.0179
-.0288
-.0358
-.0327

-.0301
-.0182
-.0066

-o● 0057
.006$
.Olw
.0112
.0024

-.010:

-.024~
-.0312
-.0292
-.0179
-.0068

● 0113
● 0134
.0120
.0137
.0156

.0199

.0218

.0192

.0067
-● 0030

-.0117
-.0189
-.0146

0.0446
.0429
.0092
-.0210
-.0428
-.0542

-.0398
-.0088
.0268
.0550
.0668

.0270
-.0062
.0014
.0076
.0099

.0145
3
-.0214
-.0436
-.0344

-.0317
-.0019
.0262

0.0151
-.0281
-.0490
-.0383
-.0203
0

.0486

.0593

.0573

.0321
-.0115

-.0410
-.0258
-.0039
-.0061
-.0088

-.0245
-.0367
-.0429
-.0065
.0153

.0191
-.0496

.0322

-0.151
-0161
-.153
-.130
-.091
-.043

.0076

.0586

.100

.127

.134

.118

.0864

.0559
,0383
.0312

.0361

.0454

.0516

.0404

.0165

-.0245
-.0755
-.119

ifATiONAiADVISORY
COMMITTEEFORAEROtWTIM

-0.0812
-.000s
.0%12
.123
.169
.194

.201

.182

.134

.063
-.0118

-.0988
-.132
-.0934
-.0467
-.0056

.0327

.0368

.0038
-.0635
-.122

-.183
-.187
-.151

%T=

T
0.198 0.995
.201 ,947
.187 .844
.164 .689
● 111 .498
.0388 .278

-.0120 .0406
-.0902 -.196
-.150 -.423
-.184 -.627
-.133 -.797

-.131 -*924
-.0560 -.993
.0200-.986
.0349 -.892
.0344 -.722

0 -.487
-.0505-.210
-.104 .0846
-.104 .361
-.0834 ● 606

-.0375 .795
.0682 .921
.138 .989

0.1921

.316

.476

.615

.722
● 793

1.680
1.821
1.692
1.617
1.565
1.517

.819 1.475

.806 1● 422

.758 1.348
● 672 1.253
.524 le180

.367 1.002

.129 .828

.176 .835
● 459 .819
,703 .804

.895 .782
1*O .774
1.008 .774

● 914 .786
.760 ● 779

.544 .758

.337 .561

.175 .350

aCMFta of table V are with referenceto chord rotated0.88° counterclockwisefrom%nueat-llne”

z
o.

chord.



— J

TABLEV

THE DIRECTCMF METHODFOR THE NACA 6512 AIRFOILa- Concluded

NATIONAL ADVl$o~
#,-- .-.a ------, –-~, __COMMITTEEFOR AFRONAIITIIY~econa appl.o~~~~~=~~ ....................

d6x2 d6y2
(rad~ans)

Ay2 672 6x2
dAx2 ~hY2

AX2
V2

r T T T ‘3 ‘2 (cl= 1.5)

Ox$ -0.0057-0.00750.0043-0.0064-0.0138-0.146 -0.08760.1$34 0.996 0.183 1.780
.045 -.010 .0005 -.0198 .0018 -.160 -.0207 .203 ●943 .332 !1.744

i .098 -.008 -.0041 -.0095 .0138 -.157 ●0517 ●201 .836 .488 1.656
3 ●149 -.004 -.0050 0 .0111 -●135 .123 .175 .681 .617 1.615
4 ●188 -.001 -.0039 .0092 .0103 -.0950 .178 .121 .492 .714 1.584
5 .210 .001 -.0004 .0187 0 -.0432 .212 .0388 .276 .775 1.552

6 .212 -.0015 .0031 .0069 -.0130 .0107 .208 -.0250 .0426 .813 1.487
7 .195 -.005 .0032 -.0057 -.0130 .0618 .177 -.1032 -.193 .812 1.411
:“ .162 -.008 .0006 -.0160 -.0057 .1006 .118 -.1559 -.423 ●773 1.320

.118 -.0075-.0037 -.0141 .0069 .1229 .0490-.1769 -.629 .682 1.231
10 .071 -.004 -.0062 0 .0~60 .1273 -.0118-.1174 -.802 .522 1.180

11 .030 0 -.0046 .0133 .0047 .1136 -.0855-.1258 -.926 ●354 1.030
12 .003 0 -.0020 -.0036 -.0033 .0844 -.136 -.0593 -.994 .134 .778

0 -.0015 .0031 -.0014 .0544 -.0903 .0186 -.985 .178 .840
:: .006 : -.0006 .0031 0 .0378 -.0437 .0349 -.891 .462 .e19
15 .015 0 -.0002 .0019 0 .0310 -.0037 .0344 -.721 .705 .804

16 .020 0 ● 0009 .0025 -.0027 .0370 .0352-.0027 -.486 .898 .781
.013 -.001 .0008 -.0008 0 .0462 .0360-.0505 -.209 .999 .774

:: -.009 .001 .0010 .0067 .0076 .0526 .0105-.0959 .0845 1.014 .768
19 -.036 -.001 .0054 0 -.0191 .0458 -.0635-.123 .365 .915 .782
20 -.064 -.005 .0015 -.0076 0 .0180 -.129 -.0834 .605 .753 .783

21 -.078 0 .0008 .0015 0 -.0237 -.182 -.0375 .792 ● 545 .751
22 -.073 -.002 .0055 .0088 -.0107 -.0700 -.178 .0575 .923 .343 .540
23 -.048 -.005 ● 0047 -.0024 -.0022 -.115 -.153 .136 .989 .172 .379

aCMF!sof tableV arewith referenceto chordrotated0.88° counterclockwisefrom ‘longest-lineUchord.
e

z
o.
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TABLE VI

CONSTANTS UiIEDWITH CMFtS OF TABLE V
●

[All angles are given with reference’to “longest-line”chord
of airfoil. ‘iLongest-line‘tchord is rotated clockwise 53~

with respect to ‘lx-axis”chord.]

>

z
0
.

Approximate on r T ~T l+q (cl ~ 1.5)

Initial 1.1013 0.0354 6° 58~. 7° 25I 5°33’

1st 1.1128 .0330 70 4! 4050, 50 19’

2nd 1.1102 .0319 6° 55I 50 4.! 5030’

Theodorsen- 1.119 ------ 70 4! 7° 39’ 50 21f
Garrick,

1st approximation

N4TIONALADVISCtRY
COMMITTEEFCRAERONAUTICS u-l

m



TABLEVII.- INVERSB CMF METHOD FOR SYMMETRICALPROFILE VELOCITY DISTRIBUTION

Initial CMF First IncrementCHF Flrat approxhation

dAxo ~yo ~x dtixl d8y1 dAx~ ~~1
Ax. AYO ml

‘rake) T F 1 F F A%l W1 F T xl k. v

~ -0.1290:X12 o 0.151 0 0 0 -o●0134-0.11920 0 0.137 1.0000.1260
-.122 .0388.0480.143 .0006...0059-,004 -.0339

3
-.1123.032 .0426.109

2’ -*lo
k

.0731+;;;[9 .119 -.0156-.034 -.0165 -,1003 .025 .102
:%Z! z

i ●!B 1“0t3:$! . 1.03

1
-.0 3 .191

1
.0830::::zg-.013

t
-.0389 .0119 -.0883 .05

t
;;;3; .715

-.005 ●116 .03g ~:;$$9-.007-.029
::!$ L :

.0370 -.0561.1083.117
-.0029.119 -.01 :2:: II! %

2 z
.0039.003 .0466 -.0211.U24 .159 .0325

.0321.109 .122-.0601-.021 .0151 t

8
.0597

k
!’ z.0877.085-.0957

.0759.0602.036-.110 %% ::il !% ::q :g :~~ :~~ :% ::~ $! ::;;
9 .0791.0326-.0105-.0963-.0015.0079.0071-.015 -.112
10 .020

1
.0117-.0385-.0597-.0011.0046.0006-.0076 .0802.0163:.039 -.0675

i
::8Z; k;~g :906

.019 .0017-.0331-.0139-.0005.0028.Oou -.0091 .007 .0045;.027 -.0230-.958
;; .05720 0 0 0 0 0 -.0110 z.O65 0 -.0110-1.000----- !.95

ro= 1.0928 P1= 1.0929

To=0,0357 ‘1= 0.0263

●HO= o ‘%~=o

~. = 180° ho = 180°

z
o
.

NATIONAL ADVISORY
COHNITTEEFOR ABROMAOTICS
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Y

8

6x

Ii
9
10

11
12
“1
1t
15

TABLEVIII.- INVERSECHF METHOD FOR a = 1 CAMBER LINE VELOCITYDISTRIEUTIOif
NAll$lNAlWlsOW I

WMllTE~FOR AERoNAuT~

0
-.0122
-.0194
-.0210
-.0161

dO~5

.001i

.011,4

.0217

.024
$.011

0

6Y1,

-0.0234

-.0192
-.0101
,0012
.0111

I.&.01
.0 1
.01
.01Zk
.0076

-.0072

k
-●020
-.025

-0.0517

II-.o~5
-.010
.0069
.0286

3-.01 1
-.

kill-.: 1

.0286

.OJ+O1

.04 ~
3.02 9

~.0580
‘.0382
)

Axl

o

.0331

.0127
-.0152
-.0325
-.0369

t-~.o&k30.0556

.064 .07
“o 53 ●O2!!

L)l i●0 2 .070

0 I0

.0654 -.53

.0374-.272
0 0

k

o.9)$0

.321

.103

.171
w?

.907
1.033
1.069

cl =Vo.67]

1● 171
1.181
1.183
1.185
1.183

.838

.835

.832

rl= 1.0043 QT = 186.10°
=0 1

‘1
= -6.10°

cl= 0.67
‘Nl

(Mod<;led
dlatrlbutlon

fOr
cl =i 0.8)

1.19&
1.20
1.20i!
1.214
1.222

1.210

L
1:+ 7

$
98

: 15

.816

.815

.813

‘z
o
.
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TABLE IX

THE USE OF THE RUNGE SCHEDULE IN THE ANALYSIS

AND SYNTHESIS OF CONJUGATE FOURIER SERIES

Proce8s I Entry In schedule Resuit

Direct method

Analysis Enter ~ for yn an # bn

Enter in Enter in
dn spaces Dn spaces

-bn an 6x

Synthesis ‘n nbn d6x/dQ

nbn -nan d5y/dQ

Inverse method of potentials

Analysis

Synthesis

Enter ~ for yn

Enter in
dn spaces

bn

nbn

-nan

- an 6y

-nan d6x/d~

-nbn d6y/dq

Inverse method of derivatives

Analysi8

Synthesis

Enter
1 dAx

— — for yn
12 dq)

an, bn

Enter in ] Enter in I
dn spaces I Dn spaces I

-an

-bn/n an/n Ax

bn/n

bn
I

dAy/dq

an/n I liy

58

NATIONAL ADVISORY

COHMITL!E FOA ALROMAUTICS.



THE USE OF THE RUNGE SCHEDULE IN THE

(a)

hml,ml.Enkr#
4, Tine.2 cm .Ynmai’

TABLE X

DIRECT METHOD FOR THE NACA 6512 AIRFOIL; FIRST APPROXIMATION

Analysis of 6yl x 100

Slmw. f., Z4.MIM,”

I !

7 A U+v Y, -0.0/3 5’, -0.103 Y, ‘0.203 Y? -0.266 Yro.289

2 8

Tic+. 2 cm Wll,hni.

u-v h-a0550 Y.*-O.152w -a25/ .V$9-O.EWGz’Xm
3 .4+8 u ]4 J d, d, d) d. d, d. d, 4 ‘% +G ~—

!J A-8 -~ ~, 4 0. 4

+-

~4 4 Da 4 0. 0’!

1Fat,. D i. table 2,

-—. . ----- -.,

z
o.



I

z
o
.

4QU !Y#?s 7 2 3 4 5 6 #Qa Check 111 check ,“

@ . 25B8Z F,. =,~, 600407 @ q ~.,,~

w .50000 h o 7/3 % -0 g~.z G 0.7/3 .@ ml 0,228 U, +Wf 0.727

@ .?olil 6 0.468 L, * -~ - f2~6@ W* EJ -(7. /5?7

m’ .86603 f,. ~,,.e I
& -r- G -T G T -f. 0.172 6U* m, -0.946 m, +W, ~zm

7s, ,96593 4 0. /52 I I 1 1 /, - //i=3

@ i.000oo

7s’ ~ -/.69/

6 0.0/34 & /.OT 7 ! ~ 0.0/34 % 7 Sr * -8/00 m, /.4/3

sum111 m, o.5/9 m,
I

m 0.455 q I
~, -/ 750 WI z .%lC?Q z-- .......... ....-. z- .....

), W Jq 055 -~ w, /./78 -1 q / 4/9 —-J Z /.36> -1 x 0.0= --- -~a, 30,= 30,= .... .
: I

m+r b /. 074 h /633 h A /48 b, 0270 b~ -0.252 b :Zze f ,?-:45+!..,. Z?- ....+.<.!.?..

z-r h -6’ 03s8 b 0. %?2 ~ -/678 h -2455 b, -.2.649
-N’ 30,=745_0z.. 30,.. .g.e..

1

UATIOh-L ADVISORY

COMMITTEE FC4 AEROIIAIITICS.
—..

Allaly,l.

Synthe, 1*

.
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THE USE OF THE RUNGE

9 ‘*:’s “’”%

SCHEDULE IN THE

TABLE X

DIRECT METHOD FOR THE NACA 6512

(b) Synthesis for bxl x 100

T,”w2,...,n%hml.

AIRFOIL; FIRST APPROXIMATION - CONCL(IDED

Sm ‘.U, f.. 2A .rdir-tel

, 4 U.v Y, /m& y,A/.#s Y.0.?40 w -/.#/

2 ‘4

Y. -2.484 w -3.//5 Y, -z9/6 v, -/. 794 3s -aoaw Y. //a

u-v

T,-. 2 ,., .mtti).

w -1437 w -A#o Y.! 4.r/ Y.w-Q.5W

3 .4+8 u 4.3- & .0.257 d, -au>= d, -O,e

v A-8 f 4 /6s3 4 L473 0, 0270 D,-@ M.? 0, -2*OO D,-X649 4 ‘2.4S9 0, -AC3Z4 D. -0. 72s D. -z?CaJa

{ ,“,., d ,n~
S“. m..!.

J& #b r
4+ F,.,,,4*b#f7

c– G a/57 f. 00,34

A,D-c ~ b -ZMrs L, ).4/s

L

NATIONAL ADVISORY

COMMITTEE FORAERONAUTICS

K
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t

Fr.doc L ,able [., th”, ,1”, coef[,chmlm

--t
7,-

T

1 .. ---- .“, W<,4 1 I 1 1 1 1 1 1 1 1
m“ I

, W., -I-# 1,
Looom 1..—..-

Sum 1[[ a .- .--, . . ..- - . . -. --, .

,, m m 6?226 -J
I “ ----” “

. . .

X*-O.2L% -J w 0.228 —J z -0.03% -J q 0.03/4 -J -+J
x+x 4 t9.4L30 h -o.39/ 4 0,459 b. Q, Obos bs a 0247 wAQJi@

x-r L n 4275 L 0.0212 L n 0035 b. ~. #0~7 h -nAMI -H.

75”

m,

Prodd table for the co.ine coerrl. i,.t.

I~.x 1 ,? 3 4 5 6 /LQct check , Ch,ck ,,

O* /.00000 Ji -o.~J&l ‘% 0,4.s0 k- 90-0. +60 -a 0.365 h -0.0/00 %1 al & -0.601
6* .96593 1 1 J%-O.Y37 &- 0.322 1 7s9

w .86603 ( &o.330 h7-
Zr-0.586

-h0.330 1 d X2 0.535
W* .70711 ] &-o,3&3 L, 7 -& 0.323 1 *’ XI 0.367
W* ,50CO0

I
h -o.Zu h 0.233 -9.o.3&/%-0.418J*-0.241 I K@ 1*-o.0267

7S* ,25?82 I 1 1 A-o.0367 75*

SW) 1

% 0.9064
!. - ,0.00[. z- ... 0,2(23

- 1
6y,-.@._.Jd,--L2~.’5‘idy”is

1+X &O:Lh r-

I-n ~** 0.0101 % 0.02+9 % -0.0200 LWO.046o
1

Synth,.,.

% -0.0458 N 0.0542 -4 $%:.:........ B,=-......__

3
m, U.uoa I

H1-0.0926 ,+mfLV29

~30.%-3
H,-O.0224m,+wW20
%-0 ~64
~.n /7)7< W. o,3z8

--. 0.1+6

1
;8 : :0:!25. 3&= t?tM8_ -y”is

‘r-_., ......... . ..... .?- ...... _______

30.. I
Mltheais

,n. -
I

—
P

.,----- ,— --- .-—. — 1 –.. -.--——
1 –. ------ I -, ----- 1 .,,

J l-- ‘- ---’’”-I
. . . -. —.—.. .——.

IJ

CCWITTEE F~ ASBCWUTICS.

.
Pe.

* 7 2 3 u 5 6 figu Check 111 ~~ck ,“

1 1 NATIONAL ADVISORY
6, .25882

e
60. 038~ ‘5 o.0/38 .-1- --.-”

w .50000 60.119 H,-0,0501
VY

5 0.//9
.70711 GO.16# ~, — -G-0./64

0-0” .86603 f,0.0974 ~, -r ! G T G 7 -&@974
7s, a~c.a r.nn:i4 1 I f. /)1,42

4
3.

0

*

R’
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NACA ARR No. L4K22a Fig. 2
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NACA ARR No. L4K22a Fig. 3
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NACA ARR No. L4K22a Fig. 6
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NACA ARR No. L4K22a Fig. 9
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